Zero Sets of Solutions to Semilinear Elliptic Systems of First Order
نویسنده
چکیده
Consider a nontrivial solution to a semilinear elliptic system of first order with smooth coefficients defined over an n-dimensional manifold. Assume the operator has the strong unique continuation property. We show that the zero set of the solution is contained in a countable union of smooth (n − 2)dimensional submanifolds. Hence it is countably (n − 2)-rectifiable and its Hausdorff dimension is at most n − 2. Moreover, it has locally finite (n − 2)dimensional Hausdorff measure. We show by example that every real number between 0 and n−2 actually occurs as the Hausdorff dimension (for a suitable choice of operator). We also derive results for scalar elliptic equations of second order. Mathematics Subject Classification: 35B05
منابع مشابه
Existence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions
This study concerns the existence and multiplicity of positive weak solutions for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is depending on the local minimization method on the Nehari manifold and some variational techniques. Also, by using Mountain Pass Lemma, we establish the existence of at least one solution with positive energy.
متن کاملA two-phase free boundary problem for a semilinear elliptic equation
In this paper we study a two-phase free boundary problem for a semilinear elliptic equation on a bounded domain $Dsubset mathbb{R}^{n}$ with smooth boundary. We give some results on the growth of solutions and characterize the free boundary points in terms of homogeneous harmonic polynomials using a fundamental result of Caffarelli and Friedman regarding the representation of functions whose ...
متن کاملMultiple Nontrivial Solutions of Elliptic Semilinear Equations
We find multiple solutions for semilinear boundary value problems when the corresponding functional exhibits local splitting at zero.
متن کاملSemilinear Elliptic Equations in Thin Domains with Reaction Terms Concentrating on Boundary
In this paper we analyze the behavior of a family of steady state solutions of a semilinear reaction-diffusion equation with homogeneous Neumann boundary condition, posed in a two-dimensional thin domain whit reaction terms concentrated in a narrow oscillating neighborhood of the boundary. We assume that the domain, and therefore, the oscillating boundary neighborhood, degenerates into an inter...
متن کاملOptimal Control of Semilinear Elliptic Equations in Measure Spaces
Optimal control problems in measure spaces governed by semilinear elliptic equations are considered. First order optimality conditions are derived and structural properties of their solutions, in particular sparsity, are discussed. Necessary and sufficient second order optimality conditions are obtained as well. On the basis of the sufficient conditions, stability of the solutions is analyzed. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999